

ROVISIaboratory

Vision Dynamics for controlling autonomous vehicles

Prof. Sorin Grigorescu

Elektrobit Automotive Romania Transilvania University of Brasov, Romania

World Usability Day November 12, 2020

About Elektrobit (EB)

Technical competencies

EB's technical core competencies are development of automotive-grade (software) products and engineering services.

Global presence

Development and business offices in Austria, China, Finland, France, Germany, India, Israel, Japan, Romania, South Korea, and USA.

Employees

More than 2600 employees* worldwide. Spans three continents and eleven countries.

Continental AG

Wholly owned, independent subsidiary of Continental AG.

100+ million

Over 100 million vehicles on the road and 1 billion embedded devices.

*December 2018, incl. Argus, excl. e.solutions.

© Elektrobit (EB) 2019 | Public

Scientific Achievements: Visual Control of Robots

From visual perception to motion planning and control
Applications: Self-driving cars (Elektrobit Automotive), FRIEND rehabilitation robot (University Bremen), PR2 service robot (Willow Garage, Google)

Elektrobit

Computer Vision vs. Visual Robotic Control

Computer Vision Task

Visual Robotic Control Task

Robotic Systems as Intelligent Agents

S.M. Grigorescu, M. Glaab and J. Schlosser, "KI für Selbstfahrende Autos", *EE Faszination Elektronic*, 2017.

Autonomous Vehicle Control Pipeline

Perception-Plan-Action processing pipeline

End2End learning for direct sensors-to-actuation mapping

→	End2End Learning	Autonomous Vehicle
	Safety Monitor	

Grigorescu et. all, "A Survey of Deep Learning Techniques for Autonomous Driving", Journal of Field Robotics, 2019.

Better Learning-based Modules through Al

Artificial intelligence (AI) is intelligence exhibited by machines.

- "Artificial Intelligence" describes a machine that mimics human cognitive functions, such as learning and problem solving
- Currently dominated by Machine Learning and Deep Learning (large scale statistical learning systems)

Traditional Perception-Plan-Act Pipeline

Perception and Control components are treated independently of each other

- Perception and path planning are decoupled from the motion controller
- Advantages: reduced design complexity due to modularization
- Disadvantages:
 - Disturbances and intrinsic components dependencies are not taken into account
 - If one component fails (e.g. path planning), the entire control system will fail

Traditional Perception-Plan-Act Pipeline

Learning-based modules Non-learning modules

Perception and Control components are treated independently of each other

Visual Perception Design

- Computation Intelligence community
- **Goal**: transform the environment in a machine understandable form

Control System Design

- Automatic Control community
- **Goal**: compute optimal control actions, based on a virtual representation of the environment

Vision Dynamics Framework

Environment perception and control based on analytical and statistical models

- Predict future observations $\hat{\mathbf{x}}^{< t+1, t+\tau_0}$, state trajectories $\hat{\mathbf{z}}^{< t+1, t+\tau_0}$ and control inputs $\hat{\mathbf{u}}^{< t+1, t+\tau_0}$
- Optimize control inputs over prediction horizon $[t + 1, t + \tau_o]$

- Assumptions:
 - The observations, states and actions are continuous and sampled at discrete time
 - The dynamics are governed by the physical laws of classical mechanics

Grigorescu, "Vision Dynamics Based Learning Control", Learning Control, Elsevier, 2020 (to be published).

- t discrete sampling time
- τ_i past sampling time horizon
- τ_o prediction horizon

Vision Dynamics Approach

Environment perception and control based on analytical and statistical models

- Predict future observations $\hat{\mathbf{x}}^{< t+1, t+\tau_0}$, state trajectories $\hat{\mathbf{z}}^{< t+1, t+\tau_0}$ and control inputs $\hat{\mathbf{u}}^{< t+1, t+\tau_0}$
- Optimize control trajectories over prediction horizon $[t + 1, t + \tau_o]$

Vision Dynamics Approach

 τ_i – past sampling time horizon (input) τ_o – prediction horizon (output)

State transition modelling

given (a set of observations x, states s and actions a)

$$\mathbf{x}^{< t - \tau_i, t >}$$
, $\mathbf{s}^{< t - \tau_i, t >}$, $\mathbf{a}^{< t + 1, t + \tau_o >}$

find (a mapping)

$$h: X \times S \to A$$

such that

$$\mathbf{z}^{} = \underbrace{f(\mathbf{z}^{}, \mathbf{u}^{})}_{a-priori} + \underbrace{h(\mathbf{s}^{})}_{\text{learned}}_{\text{statistical}} \text{ model} + \underbrace{h(\mathbf{s}^{})}_{\text{learned}}_{\text{statistical}}_{\text{model}}$$

Autonomous Driving Problem

A vision dynamics control perspective

- Given
 - a sequence of past occupancy grid observations $\mathbf{X}^{< t-\tau_i,t>} = [\mathbf{x}^{< t-\tau_i>}, ..., \mathbf{x}^{< t-1>}, \mathbf{x}^{< t>}]$
 - the position of the ego-vehicle $p_{ego}^{<t>} \in \mathbb{R}^2$ in occupancy grid space $\mathbf{x}^{<t>}$
 - and a destination position $\mathbf{p}_{dest}^{< t+ au_o>}$
- the task is to
 - estimate a local state trajectory $\mathbf{Y}^{< t+1, t+\tau_o>} = [\mathbf{y}^{< t+1>}, \dots, \mathbf{y}^{< t+\tau_o>}]$ (yellow line), encoding position and velocity
 - to destination point $\mathbf{p}_{dest}^{< t+\tau_o>}$
 - along a prediction horizon au_o
- Observations:
 - sequences of past occupancy grids $\mathbf{X}^{< t-\tau_i,t>}$, marking free-space with green and obstacles with red

Sequences of Occupancy Grids as Observations

• Occupancy Grids are fused video camera, LiDAR and radar data observations (green: free space, red: obstacles, black: unknown)

Simulated Occupancy Grids

Representation Learning in Robotic Perception

Deep Grid Net (DGN)

Deep Grid Net (DGN): A Neural Network for Driving Context Understanding

- Input: Grid data acquired from different driving scenarios
- **Output**: Driving context information provided as a three classes probabilistic output (inner city driving, motorway driving and parking)

Inner city

Motorway

Marina et. all, "Deep Grid Net (DGN): A Deep Learning System for Real-Time Driving Context Understanding", Int. Conf. on Robotic Computing IRC 2019, Naples, Italy, February 25-27, 2019.

Deep Grid Net (DGN)

NeuroTrajectory: Perception-Planning Deep Network

- Local state prediction
- Encode environment perception, path planning and behavioral planning within a single statistical model (DNN)

Grigorescu et. all, "NeuroTrajectory: A Neuroevolutionary Approach to Local State Trajectory Learning for Autonomous Vehicles", *IEEE Robotics and Automation Letters*, 2019.

NeuroTrajectory: Vision Dynamics Model

- $CNN^{< t-\tau_i,t>}$ sequence of spatial features is further fed to a stack of LSTM branches
- $\mathbf{Y}^{\langle t+1,t+\tau_0 \rangle} = [\mathbf{y}^{\langle t+1 \rangle}, \dots, \mathbf{y}^{\langle t+\tau_0 \rangle}]$ estimated local states along prediction interval $[t + 1, t + \tau_0]$
- $\mathbf{y}^{< t+i>}$ -local state element predicted by LSTM branch i

NeuroTrajectory: Evolutionary DNN Training

- Multi-objective training on *Objective Space L*: evolving a population of deep neural networks φ_K
- Multi-objective loss: the ego-vehicle's i) traveled path l_1 , ii) lateral velocity l_2 and iii) longitudinal velocity l_3

- M = (S, A, T, L)
- S states trajectories $\mathbf{s}^{\langle t-\tau_i,t\rangle} = (\mathbf{x}^{\langle t-\tau_i,t\rangle})$
- A trajectory sequences; $\mathbf{Y}^{< t+1, t+\tau_0>} \in A$
- $T: S \times A \times S \rightarrow [0, 1]$ transition function describing the probability of arriving in state $\mathbf{s}^{< t + \tau_0 >}$, after optimizing over trajectory $\mathbf{a}^{< t >}$
- $L: S \times A \times S \to \mathbb{R}^n$ multi-objective cost function quantifying the quality of trajectory $\mathbf{Y}^{<t>}$

$$l_{1}^{\langle t+\tau_{o}\rangle} = \sum_{i=1}^{\tau_{o}} \left\| \mathbf{p}_{ego}^{\langle t+i\rangle} - \mathbf{p}_{dest}^{\langle t+i\rangle} \right\|_{2}^{2}$$
$$l_{2}^{\langle t+\tau_{o}\rangle} = \sum_{i=1}^{\tau_{o}} v_{\delta}^{\langle t+i\rangle}$$
$$l_{3}^{\langle t+\tau_{o}\rangle} = \sum_{i=1}^{\tau_{o}} v_{f}^{\langle t+i\rangle} \in [v_{min}, v_{max}]$$

NeuroTrajectory: Evolutionary DNN Training

- Multi-objective training on *Objective Space L*: evolving a population of deep neural networks φ_K
- $\phi_i(\Theta_i)$ deep network individual with weights Θ_i
- $\Phi^* = [\phi_1^*(\Theta_i^*), ..., \phi_k^*(\Theta_k^*)]$ Pareto front of optimal deep neural networks

Car pos x: 89.11 Car pos y: 432.41 rei x: 89.11 rei y: 432.41 velocity: 0.0 km/h Enable front so

nsor

Predicted delta values: dx1 00 dy1: 1.7 dx2 00 dy2: 2.5 dx3 -01 dy3 3.4 dx4: -0.1, dy4: 4.3 dx5: -0.2, dy5: 5.1 dx5: -0.2, dy6: 6.0 dx7: -0.3, dy7: 6.9

Highway Driving

Collision#540 with Fence_250 - ObjID 6 Control Mode: API Accel: 1.000000 Break: 0.000000 Steering: 0.020000 Handbreak: 0 Target Gear: 0 Speed: 2.8 m/s Gear: 2 RPM: 3,289.41

Neural net activations: steering = 0.02, throttle = 1.0

 \frown

Thank you!

World Usability Day November 12, 2020

Sorin.Grigorescu@elektrobit.com