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About Elektrobit (EB)

Technical competencies
EB’s technical core competencies are development 
of automotive-grade (software) products and 
engineering services.

Employees
More than 2600 employees* worldwide.
Spans three continents and eleven countries.

Consistent growth
In 2018: +35 % 

Global presence
Development and business offices in Austria, 
China, Finland, France, Germany, India, Israel, 
Japan, Romania, South Korea, and USA.

Continental AG
Wholly owned, independent subsidiary 
of Continental AG.

100+ million
Over 100 million vehicles on the road 
and 1 billion embedded devices.
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▪From visual perception to motion planning and control
▪Applications: Self-driving cars (Elektrobit Automotive), FRIEND 

rehabilitation robot (University Bremen), PR2 service robot 
(Willow Garage, Google)

Pose
Estimation

3D
Reconstruction
and Object
Tracking

Scene
Understanding

Visual Data 
Acquisition

- Stereo camera
- Time-of-Flight 
- Structured light

(MS Kinect)
- LiDAR

Scientific Achievements: Visual Control of Robots

Motion
Planning and
Control

www.rovislab.com
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Computer Vision vs. Visual Robotic Control

www.rovislab.com

Computer Vision Task Visual Robotic Control Task
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Robotic Systems as Intelligent Agents

www.rovislab.com

Video Cameras

Steering control

Driving 
Environment

Highway

Inner-city

Parking place

…

Radars

GPS IMU

Autonomous Vehicle Hardware Setup

5

Acceleration

S.M. Grigorescu, M. Glaab and J. Schlosser, “KI für Selbstfahrende Autos”, EE Faszination Elektronic, 2017.

LiDAR

Observation

Control actions
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Autonomous Vehicle Control Pipeline

www.rovislab.com
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Perception-Plan-Action processing pipeline

End2End learning for direct sensors-to-actuation mapping

Deep Learning 

(or Classical) 

Perception and Localization

Deep Learning 

(or Classical) 

High-Level Path Planning

AI-based 

(or Classical) 

Behavior Arbitration

(low-level path planning)

Learning-based 

(or Classical) 

Motion Controllers

x1

x2

x3

+1 +1

+1

Safety Monitor

Autonomous 

Vehicle

End2End Learning

Safety Monitor

Autonomous 

Vehicle

Grigorescu et. all, “A Survey of Deep Learning Techniques for Autonomous Driving”, Journal of Field Robotics, 2019.
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Better Learning-based Modules through AI

www.rovislab.com

Artificial intelligence (AI) is intelligence exhibited by machines.

• “Artificial Intelligence" describes a machine that mimics human cognitive functions, such as learning and problem solving

• Currently dominated by Machine Learning and Deep Learning (large scale statistical learning systems)

Higher human brain 
functions simulation

General programming 
language

Neurons arrangement 
for forming concepts

Measure problem 
complexity

Self-improvement

Abstraction: deal with 
ideas

Creativity and 
randomness
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Learning-based modules

Non-learning modules
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Traditional Perception-Plan-Act Pipeline

www.rovislab.com

Perception and Control components are treated independently of each other

• Perception and path planning are decoupled from the motion controller

• Advantages: reduced design complexity due to modularization

• Disadvantages:

– Disturbances and intrinsic components dependencies are not taken into account

– If one component fails (e.g. path planning), the entire control system will fail

Motion 
Controller

Autonomous 
Vehicle

Localization

Path Planning
(e.g. A* or DWA)

Environment 
Perception

(world modelling)

Behavioral 
Planning

ො𝒛< 𝑡−𝜏𝑖,𝑡>

𝐳𝑑
<𝑡+1,𝑡+𝜏𝑜> 𝐮<𝑡+1,𝑡+𝜏𝑜> 𝐳<𝑡>

Vehicle 
state

Learning-based modules

Non-learning modules
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Traditional Perception-Plan-Act Pipeline

www.rovislab.com

Perception and Control components are treated independently of each other

Visual Perception Design
• Computation Intelligence community

• Goal: transform the environment in a machine 
understandable form

Control System Design
• Automatic Control community

• Goal: compute optimal control actions, based on a 
virtual representation of the environment

Learning-based modules

Non-learning modules

Motion 
Controller

Autonomous 
Vehicle

Localization

Path Planning
(e.g. A* or DWA)

Environment 
Perception

(world modelling)

Behavioral 
Planning

ො𝒛< 𝑡−𝜏𝑖,𝑡>

𝐳𝑑
<𝑡+1,𝑡+𝜏𝑜> 𝐮<𝑡+1,𝑡+𝜏𝑜> 𝐳<𝑡>

Vehicle 
state
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Vision Dynamics Framework

www.rovislab.com

Environment perception and control based on analytical and statistical models

10

• Predict future observations ො𝐱<𝑡+1,𝑡+𝜏𝑜>, state trajectories ො𝐳<t+1,t+τo> and control inputs ෝ𝐮<𝑡+1,𝑡+𝜏𝑜>

• Optimize control inputs over prediction horizon [𝑡 + 1, 𝑡 + 𝜏𝑜]

Vision Dynamics
Environment dynamics prediction, understanding and optimal control

𝐱<𝑡−𝜏𝑖,𝑡> ො𝐱<𝑡+1,𝑡+𝜏𝑜>

ො𝐳<𝑡+1,𝑡+𝜏𝑜>

ෝ𝐮<𝑡+1,𝑡+𝜏𝑜>
𝐳<𝑡−𝜏𝑖,𝑡>

𝐮<𝑡−𝜏𝑖,𝑡>

Model-based 
Dynamics 
Estimation

Observations

States

Actions

Observations

States

Actions

Autonomous 
Robotics 

Environment

• Assumptions:

 The observations, states and actions are continuous and sampled at discrete time

 The dynamics are governed by the physical laws of classical mechanics

• 𝑡 – discrete sampling time

• 𝜏𝑖 – past sampling time horizon

• 𝜏𝑜 – prediction horizon

Grigorescu, “Vision Dynamics Based Learning Control”, Learning Control, Elsevier, 2020 (to be published).
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Vision Dynamics Approach

www.rovislab.com

Environment perception and control based on analytical and statistical models

11

• Predict future observations ො𝐱<𝑡+1,𝑡+𝜏𝑜>, state trajectories ො𝐳<t+1,t+τo> and control inputs ෝ𝐮<𝑡+1,𝑡+𝜏𝑜>

• Optimize control trajectories over prediction horizon [𝑡 + 1, 𝑡 + 𝜏𝑜]
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Vision Dynamics Approach

www.rovislab.com

State transition modelling 

12

given (a set of observations 𝐱, states 𝐬 and actions 𝐚)

𝐱<𝑡−𝜏𝑖,𝑡>, 𝐬<𝑡−𝜏𝑖,𝑡>, 𝐚<𝑡+1,𝑡+𝜏𝑜>

find (a mapping)

ℎ: 𝑋 × 𝑆 → 𝐴

such that

𝐳<𝑡+1> = 𝑓 𝐳<𝑡>, 𝐮<𝑡>

𝑎−𝑝𝑟𝑖𝑜𝑟𝑖
model

+ ℎ 𝐬<𝑡−𝜏𝑖,𝑡>

learned
statistical
model

encodes the 
scene‘s 
temporal 
dynamics

𝜏𝑖 – past sampling time horizon (input)

𝜏𝑜 – prediction horizon (output)



14© Elektrobit (EB) 2019 | Public

Autonomous Driving Problem

www.rovislab.com

A vision dynamics control perspective
• Given

– a sequence of past occupancy grid observations  
𝐗<𝑡−𝜏𝑖,𝑡> = [𝐱<𝑡−𝜏𝑖>, … , 𝐱<𝑡−1>, 𝐱<𝑡>]

– the position of the ego-vehicle 𝐩𝑒𝑔𝑜
<𝑡> ∈ ℝ2 in occupancy grid space 

𝐱<𝑡>

– and a destination position 𝐩𝑑𝑒𝑠𝑡
<𝑡+𝜏𝑜>

• the task is to 

– estimate a local state trajectory  𝐘<𝑡+1,𝑡+𝜏𝑜> = 𝐲<𝑡+1>, … , 𝐲<𝑡+𝜏𝑜>

(yellow line), encoding position and velocity

– to destination point 𝐩𝑑𝑒𝑠𝑡
<𝑡+𝜏𝑜>

– along a prediction horizon 𝜏𝑜

• Observations:

– sequences of past occupancy grids 𝐗<𝑡−𝜏𝑖,𝑡>, marking free-space with 
green and obstacles with red 𝐱<𝑡> 

𝐲<𝑡+ > 

𝐩𝑑𝑒𝑠𝑡
<𝑡+𝜏𝑜> 

𝐲<𝑡+2> 

𝐲<𝑡+1> 

𝐩𝑒𝑔𝑜
<𝑡> 
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Sequences of Occupancy Grids as Observations

www.rovislab.com

Simulated Occupancy Grids Real-world Occupancy Grids

• Occupancy Grids are fused video camera, LiDAR and radar data observations (green: free space, red: obstacles, black: unknown)
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Representation Learning in Robotic Perception

www.rovislab.com
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Drivable area 
segmentation

AI Inference 
Engine C

Deep Neural Networks

GPS

IMU

Laser

Camera

Grid Fusion Space

Representation 
Learning

Boundaries 
and lanes 
detector

AI Inference 
Engine A

Driving 
environment 
recognition

AI Inference 
Engine B

AI Inference 
Engine n

Motion 
planning and 

control
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Deep Grid Net (DGN)

www.rovislab.com

Deep Grid Net (DGN): A Neural Network for Driving Context Understanding

Inner city Motorway Parking place

• Input: Grid data acquired from different driving scenarios

• Output: Driving context information provided as a three classes probabilistic output (inner city driving, motorway driving and parking)

17

Marina et. all, “Deep Grid Net (DGN): A Deep Learning System for Real-Time Driving Context Understanding”, Int. Conf. on Robotic 
Computing IRC 2019, Naples, Italy, February 25-27, 2019.
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Deep Grid Net (DGN)

www.rovislab.com
18
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TC Artificial Intelligence
19
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Vision Dynamics System

NeuroTrajectory: Perception-Planning Deep Network

www.rovislab.com

• Local state prediction 

• Encode environment perception, path planning and behavioral planning within a single statistical model (DNN)

Constrained 
Nonlinear MPC

Autonomous 
Vehicle

Localization

Vehicle 
state

Vision Dynamics Model
(Environment Perception; Path Planning; Behavioral Planning)

ො𝒛< 𝑡−𝜏𝑖,𝑡>

𝐘<𝑡+1,𝑡+𝜏𝑜> 𝐮<𝑡+1,𝑡+𝜏𝑜> 𝐳<𝑡>

Grigorescu et. all, “NeuroTrajectory: A Neuroevolutionary Approach to Local State Trajectory Learning for Autonomous Vehicles”, 
IEEE Robotics and Automation Letters, 2019.
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NeuroTrajectory: Vision Dynamics Model

www.rovislab.com

• CNN< 𝑡−𝜏𝑖,𝑡> sequence of spatial features is further fed to a stack of LSTM branches

• 𝐘<𝑡+1,𝑡+𝜏𝑜> = 𝐲<𝑡+1>, … , 𝐲<𝑡+𝜏𝑜> - estimated local states along prediction interval [𝑡 + 1, 𝑡 + 𝜏𝑜]

• 𝐲<𝑡+𝑖> - local state element predicted by LSTM branch 𝑖
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www.rovislab.com

• Multi-objective training on Objective Space L: evolving a population of deep neural networks φ𝐾

• Multi-objective loss: the ego-vehicle’s i) traveled path 𝒍𝟏, ii) lateral velocity 𝒍𝟐 and iii) longitudinal velocity 𝒍𝟑

NeuroTrajectory: Evolutionary DNN Training

• 𝑀 = (𝑆, 𝐴, 𝑇, 𝐿)

• 𝑆 – states trajectories 𝐬<𝑡−𝜏𝑖,𝑡> = (𝐱<𝑡−𝜏𝑖,𝑡>)

• 𝐴 – trajectory sequences; 𝐘<𝑡+1,𝑡+𝜏𝑜> ∈ 𝐴

• 𝑇: 𝑆 × 𝐴 × 𝑆 → [0, 1] – transition function describing the probability
of arriving in state 𝐬<𝑡+𝜏𝑜>, after optimizing over trajectory 𝐚<𝑡>

• 𝐿: 𝑆 × 𝐴 × 𝑆 → ℝ𝑛 – multi-objective cost function quantifying the 
quality of trajectory 𝐘<𝑡>

𝑙1
<𝑡+𝜏𝑜> =

𝑖=1

𝜏𝑜

𝐩𝑒𝑔𝑜
<𝑡+𝑖> − 𝐩𝑑𝑒𝑠𝑡

<𝑡+𝑖>

2

2

𝑙2
<𝑡+𝜏𝑜> =

𝑖=1

𝜏𝑜

𝑣𝛿
<𝑡+𝑖>

𝑙 
<𝑡+𝜏𝑜> =

𝑖=1

𝜏𝑜

𝑣𝑓
<𝑡+𝑖> ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]
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www.rovislab.com

• Multi-objective training on Objective Space L: evolving a population of deep neural networks φ𝐾

• φ𝑖(Θ𝑖) – deep network individual with weights Θ𝑖

• Φ∗ = [φ1
∗ Θ𝑖

∗ , … , φ𝑘
∗ (Θ𝑘

∗ )]- Pareto front of optimal deep neural networks

NeuroTrajectory: Evolutionary DNN Training
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GridSim Simulation

A Neuroevolutionary Approach to Local State Trajectory Learning in Autonomous Driving
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Highway Driving

A Neuroevolutionary Approach to Local Trajectory Estimation in Autonomous Driving

Reference trajectory

NeuroTrajectoryHighway Driving
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TC Artificial Intelligence

Learning how to Drive in a Simulation

End2End Learning in AirSim

26
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